021-80392064-803
您好,欢迎光临上海佳武自动化科技有限公司,我们将竭诚为您服务 点击这里给我发消息

美国PHD气动元件专营服务商

phd夹具,phd抓手,phd机械手,phd气缸,phd滑块,phd旋转执行器

品牌名称
企业档案
上海佳武自动化科技有限公司

胡经理 女士  

经营范围:phd夹具,phd抓手,phd机械手,phd气缸,phd滑块,phd旋转执行器

主营行业:

所在地区:上海

产品分类
联系方式
  • 联系人:胡经理
  • 电话:021-80392064-803
  • Q Q: 3297085887
  • 邮件:3297085887@qq.com
  • 手机:13262257160
您当前的位置:首页 » 新闻中心 » 气动机械手特点是什么?
新闻中心
气动机械手特点是什么?
发布时间:2016-07-08        浏览次数:414        返回列表
   近20年来,气动技术的应用领域迅速拓宽,尤其是在各种自动化生产线上得到广泛应用。电气可编程控制技术与气动技术相结合,使整个系统自动化程度更高,控制方式更灵活,性能更加可靠;气动机械手、柔性自动生产线的迅速发展,对气动技术提出了更多更高的要求;微电子技术的引进,促进了电气比例伺服技术的发展,现代控制理论的发展,负气动技术从开关控制进进闭环比例伺服控制,控制精度不断进步;由于气动脉宽调制技术具有结构简单、抗污染能力强和本钱低廉等特点,国内外都在大力开发研究。气压传动工作压力较低,运作提件简单,容易,处理方便, 般压缩空气可存贮在储气罐中,就算发生突然断电也不会导致工艺流程突然中断。气动机械手通用性强,机械手臂采用气流负压式吸盘或是夹持式,能实现手腕回转运动,按照抓取工件的要求,手臂有三个自由度,即手臂的伸缩、左右回转、和上下升降运动。回转与升降运动是通过立柱来实现的。横向移动为手臂的横移,手臂的各种运动都是由气缸来实现的,由于气压传动系统动作迅速、反应灵敏、阻力损失和泄漏较小,成本低廉,有 定的承载能力,在足够的工作空间以及在任意位置都能自动定位等特性。 由气动元件组成的控制系统只适用于简单工艺、小型产品,因为定位精准方面欠缺,不能在高速情况下实现高度的精准定位。气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术,是实现各种生产控制、自动控制的重要手段之 。
  大约开始于1776年,Johnwilkimson发明能产生1个大气压左右压力的空气压缩机。1880年,人们 次利用气缸做成气动刹车装置,将它成功地用到火车的制动上。20世纪30年代初,气动技术成功地应用于自动门的开闭及各种机械的辅助动作上。至50年代初,大多数气压元件从液压元件改造或演变过来,体积很大。60年代,开始构成产业控制系统,自成体系,不再与风动技术相提并论。在70年代,由于气动技术与电子技术的结合应用,在自动化控制领域得到广泛的推广。80年代进进气动集成化、微型化的时代。90年代至今,气动技术突破了传统的死区,经历着奔腾性的发展,人们克服了阀的物理尺寸局限,真空技术日趋完美,高精度模块化气动机械手问世,智能气动这 概念产生,气动伺服定位技术负气缸高速下实现任意点自动定位,智能阀岛十分理想地解决了整个自动生产线的分散与集中控制题目。气动机械手作为机械手的 种,它具有结构简单、重量轻、动作迅速、平稳、可靠、节能和不污染环境等优点而被广泛应用。气动机械手夸大模块化的形式,现代传输技术的气动机械手在控制方面采用了 进的阀岛技术(可重复编程等),气动伺服系统(町实现任意位置上的精确定位),在执行机构上全部采用模块化的拼装结构。    90年代初,由布鲁塞尔皇家军事学院Y·Bando教授领导的综合技术部开发研制的电子气动机器人——“阿基里斯”六脚勘探员,是气动技术、PLC控制技术和传感技术完美结合产生的“六足动物”。6个脚中的每 个脚都有3个自由度, 个直线气缸把脚提起、放下, 个摆动马达控制脚伸展/退回运动,另 个摆动马达则负责围绕脚的轴心做旋转之用。 精度是指机器人、机械手到达指定点的精确程度,它与驱动器的分辨率以及反馈装置有关。
  重复精度是指假如动作重复多次,机械手到达同样位置的精确程度。重复精度比精度更重要,假如 个机器人定位不够精确,通常会显示 个固定的误差,这个误差是可以猜测的,因此可以通过编程予以校正。重复精度限定的是 个随机误差的范围,它通过 定次数地重复运行机器人来测定。随着微电子技术和现代控制技术的发展,以及气动伺服技术走出实验室和气动伺服定位系统的成套化。气动机械手的重复精度将越来越高,它的应用领域也将更广阔,如核产业和军事产业等。精度是指机器人、机械手到达指定点的精确程度, 它与驱动器的分辨率以及反馈装置有关。重复精度是指假如动作重复多次,机械手到达同样位置的精确程度。重复精度比精度更重要,假如 个机器人定位不够精确,通常会显示 个固定的误差,这个误差是可以猜测的,因此可以通过编程予以校正。重复精度限定的是 个随机误差的范围,它通过 定次数地重复运行机器人来测定。随着微电子技术和现代控制技术的发展,以及气动伺服技术走出实验室和气动伺服定位系统的成套化。气动机械手的重复精度将越来越高,它的应用领域也将更广阔,如核产业和军事产业等。
   . 气动机械手发展史,大约开始于1776年,Johnwilkimson发明能产生1个大气压左右压力的空气压缩机。1880年,人们 次利用气缸做成气动刹车装置,将它成功地用到火车的制动上。20世纪30年代初,气动技术成功地应用于自动门的开闭及各种机械的辅助动作上。至50年代初,大多数气压元件从液压元件改造或演变过来,体积很大。60年代,开始构成产业控制系统,自成体系,不再与风动技术相提并论。在70年代,由于气动技术与电子技术的结合应用,在自动化控制领域得到广泛的推广。80年代进进气动集成化、微型化的时代。90年代至今,气动技术突破了传统的死区,经历着奔腾性的发展,人们克服了阀的物理尺寸局限,真空技术日趋完美,高精度模块化气动机械手问世,智能气动这 概念产生,气动伺服定位技术负气缸高速下实现任意点自动定位,智能阀岛十分理想地解决了整个自动生产线的分散与集中控制题目。
  二. 气动机械手特点,气压传动工作压力较低,运作提件简单,容易,处理方便, 般压缩空气可存贮在储气罐中,就算发生突然断电也不会导致工艺流程突然中断。气动机械手通用性强,机械手臂采用气流负压式吸盘或是夹持式,能实现手腕回转运动,按照抓取工件的要求,手臂有三个自由度,即手臂的伸缩、左右回转、和上下升降运动。回转与升降运动是通过立柱来实现的横向移动为手臂的横移,手臂的各种运动都是由气缸来实现的,由于气压传动系统动作迅速、反应灵敏、阻力损失和泄漏较小,成本低廉,有 定的承载能力,在足够的工作空间以及在任意位置都能自动定位等特性。由气动元件组成的控制系统只适用于简单工艺、小型产品,因为定位精准方面欠缺,不能在高速情况下实现高度的精准定位。气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术,是实现各种生产控制自动控制的重要手段之 。  气动机械手作为机械手的 种,它具有结构简单、重量轻、动作迅速、平稳、可靠、节能和不污染环境等优点而被广泛应用。气动机械手夸大模块化的形式,现代传输技术的气动机械手在控制方面采用了 进的阀岛技术(可重复编程等),气动伺服系统(町实现任意位置上的精确定位),在执行机构上全部采用模块化的拼装结构。